31 research outputs found

    Urban energy consumption and CO2 emissions in Beijing: current and future

    Get PDF
    This paper calculates the energy consumption and CO2 emissions of Beijing over 2005–2011 in light of the Beijing’s energy balance table and the carbon emission coefficients of IPCC. Furthermore, based on a series of energy conservation planning program issued in Beijing, the Long-range Energy Alternatives Planning System (LEAP)-BJ model is developed to study the energy consumption and CO2 emissions of Beijing’s six end-use sectors and the energy conversion sector over 2012–2030 under the BAU scenario and POL scenario. Some results are found in this research: (1) During 2005–2011, the energy consumption kept increasing, while the total CO2 emissions fluctuated obviously in 2008 and 2011. The energy structure and the industrial structure have been optimized to a certain extent. (2) If the policies are completely implemented, the POL scenario is projected to save 21.36 and 35.37 % of the total energy consumption and CO2 emissions than the BAU scenario during 2012 and 2030. (3) The POL scenario presents a more optimized energy structure compared with the BAU scenario, with the decrease of coal consumption and the increase of natural gas consumption. (4) The commerce and service sector and the energy conversion sector will become the largest contributor to energy consumption and CO2 emissions, respectively. The transport sector and the industrial sector are the two most potential sectors in energy savings and carbon reduction. In terms of subscenarios, the energy conservation in transport (TEC) is the most effective one. (5) The macroparameters, such as the GDP growth rate and the industrial structure, have great influence on the urban energy consumption and carbon emissions

    Toilet training: what can the cookstove sector learn from improved sanitation promotion?

    Get PDF
    Within the domain of public health, commonalities exist between the sanitation and cookstove sectors. Despite these commonalities and the grounds established for cross-learning between both sectors, however, there has not been much evidence of knowledge exchange across them to date. Our paper frames this as a missed opportunity for the cookstove sector, given the capacity for user-centred innovation and multi-scale approaches demonstrated in the sanitation sector. The paper highlights points of convergence and divergence in the approaches used in both sectors, with particular focus on behaviour change approaches that go beyond the level of the individual. The analysis highlights the importance of the enabling environment, community-focused approaches and locally-specific contextual factors in promoting behavioural change in the sanitation sector. Our paper makes a case for the application of such approaches to cookstove interventions, especially in light of their ability to drive sustained change by matching demand-side motivations with supply-side opportunities

    Environmentally sustainable management of water demands under changing climate conditions in the Upper Ganges Basin, India

    No full text
    Allocation of water to cities, industries and agriculture has been a common practice in river basin planning and management. It is widely accepted that water also needs to be allocated for the aquatic environment, i.e. alongside the demands of other users. This paper describes the application of a basin planning model (Water Evaluation and Planning Model) to assess present and alternative water management options, which include incorporation of environmental flows (EFs) in the Upper Ganges River, India. Furthermore, the impacts of projected climate changes are also considered. The paper also briefly summarizes the EF assessment methodology, which was conducted through a multidisciplinary, multi-stakeholder approach (Building Blocks methodology). This is the first time that a comprehensive EF assessment has been done in India. Results from this study show that annual water demands for the domestic, industrial and irrigation water use are 1375, 1029 and 6680MCM, respectively. Unmet demands, i.e. when there is not enough water to fulfil the required demands, were a problem during December and January for the past climate and during December, January and February under climate change-projected conditions. Adding EFs increased unmet demands in the same winter months. During March-November, unmet water demands were less than 5MCM even with the addition of EFs. Reducing crop type to less water intense crops was more effective in reducing unmet demands than decreasing the cropped area. Improving irrigation systems through improved efficiency and water saving technologies as well as conjunctive use of surface and ground water is also viable options. However, the most effective water management solution is from managing upstream storage structures such as the Tehri dam for increased dry season flows. Dry season releases from Tehri dam can be used to reduce the downstream unmet demands, which include EFs to less than 5MCM/month

    International and National Political Regulations of Aviation’s Climate Impact and Cost Impacts on Air Freight

    No full text
    Das Kapitel untersucht die Kosten, die im Luftfrachtbereich durch die Einführung umweltpolitischer Maßnahmen auf Seiten der Fluggesellschaften entstehen
    corecore